

1. Motivations

- 79 North glacier, North East Greenland
- Available datasets (thickness, velocities,...)
- Flux divergence

2. Effect of a 3d velocity 79 North glacier

- Control methods on three ice flow models
- Flux divergence analysis

3. Effect of the thickness resolution

- 1 km vs. 5 km resolution
- Do we need a higher resolution?

1. Motivations

- 79 North glacier, North East Greenland
- Available datasets (thickness, velocities,...)
- Flux divergence

2. Effect of a 3d velocity 79 North glacier

- Control methods on three ice flow models
- Flux divergence analysis

3. Effect of the thickness resolution

- 1 km vs. 5 km resolution
- Do we need a higher resolution?

Nioghalvfjerdsfjorden (79N glacier)

Joughin, 2007

Thomsen, 1997

- Outlet glacier of the Northeast Greenland ice stream
- Thinning at the GL: 0.3 m/yr, Thomas et al, 2009

Available datasets

Flux divergence

Flux divergence from ice thickness and InSAR velocities (m/yr)

Mass balance equation:

$$\frac{\partial H}{\partial t} = -\nabla \cdot (\bar{u}H) + \dot{M}_s - \dot{M}_b$$

H: thickness

ū: horizontal velocity

 ${\rm M}_{\rm s}$: surface accumulation

M_b: basal melting

N. Reeh, pers. comm., 2009

Motivations

Mass balance equation

$$\frac{\partial H}{\partial t} = -\nabla \cdot (\vec{u} H) + \dot{M}_s - \dot{M}_b$$

- → divergence term very noisy and not always physical
- Problem might come from:
 - 1. u_s (surface velocities) instead of \bar{u} (depth-averaged velocities)
 - 2. resolution of H
- Here we investigate both effects on 79 North glacier

1. Motivations

- 79 North glacier, North East Greenland
- Available datasets (thickness, velocities,...)
- Flux divergence

2. Effect of a 3d velocity 79 North glacier

- Control methods on three ice flow models
- Flux divergence analysis

3. Effect of the thickness resolution

- 1 km vs. 5 km resolution
- Do we need a higher resolution?

Experiment

Ice flow models

- MacAyeal's shelfy stream [1989]
- Pattyn/Blatter's higher order [2003]
- Full Stokes

Datasets

- InSAR velocities from Rignot et al, 2001
- Thickness/bed from Reeh, pers. comm., 2009
- Surface temperature based on Huybrechts et al, 1993

Data assimilation

- Control method on ice rigidity on the ice shelf
- Control method on basal drag on the ice sheet

Modeled vs observed velocities

MacAyeal (SS) velocity [m/yr]

Average misfit: 25.3 m/yr

Pattyn (HO) velocity [m/yr]

Average misfit: 24.6 m/yr

Stokes velocity [m/yr]

Average misfit: 22.1 m/yr

Cross sections velocities

Depth dependence of velocity

Basal velocity:

MacAyeal velocity [m/yr]

Pattyn velocity [m/yr]

Stokes velocity [m/yr]

Relative difference between surface and average velocities:

MacAyeal difference [%]

Pattyn difference [%]

Stokes difference [%]

December 14th, 2009 AGU Fall meeting 2009

Flux divergence

Flux divergence MacAyeal [m/yr]

Flux divergence Pattyn [m/yr]

Flux divergence Stokes [m/yr]

Close-up on the ice sheet:

1. Motivations

- 79 North glacier, North East Greenland
- Available datasets (thickness, velocities,...)
- Flux divergence

2. Effect of a 3d velocity 79 North glacier

- Control methods on three ice flow models
- Flux divergence analysis

3. Effect of the thickness resolution

- 1 km vs. 5 km resolution
- Do we need a higher resolution?

5 km vs 1 km resolution Stokes velocities

- Is 1-km resolution sufficient?
- Flux divergence with Stokes modeled velocity on two datasets

© Copyright 2010 California Institute of Technology

Balanced thickness

• Solve the thickness in the mass balance equation to have a steady-state and no accumulation/ablation: $\nabla\left(\bar{u}H\right)=0$

1 km resolution thickness [m] (from 5 km-spaced tracks)

Calculated balanced thickness [m]

- Differences between surface and depth-average velocities are not sufficient to explain the calculated wiggles in flux divergence.
 - → It is not an effect of 3 dimensional flow over bumps.
- Pattern of melting/freezing sensitive to spatial resolution of thickness
 - → This means we need a higher resolution thickness data to obtain physically tenable flux divergence.
- What resolution do we need?
 - → Our inversion results suggest a spatial resolution of a few hundred meters
- Why do we need such high resolution data?
 - → Ice flow significantly affected by the presence of bumps ~ thickness.
 - → Current maps may lead to erroneous results.

